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A theorem recently published by Lindsay
‘furnishes the conditions for solving
maximum likelihood formulations which
seek to find a maximising distribution of
some parameter without placing any
restriction on the distribution other than
that it be a legitimate probability distribu-
tion. Reliance on this theorem in the
context of the Jelinski/Moranda approach
to (ke estimation of software reliabitily
permi:s the formnlation tuv be 1evi-cu,
replacing the assumiption that each faull s
equally likely to cause a failure with the
less limiting assumption that each fault
possesses its own potentially unique failure
rate parameter chosen from some probab-
ility distribution common to all the faults.
This paper introduces Lindsay’s theorem
and illustrates its use by applying il io
Jelinski’s and Moranda’s original soft-
ware reliability model.
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- Relaxation of the common failuse
rate assumption in modellifig
software reliabiliiy

jatroduction

| rom the time the first software reliability measurement models were introduced over a decade ago, the
iequently made assumption that each fault in the system contributes equally at every point in time to the
probability of system failure has been viewed as a serious limitation. Various approaches have been
j-roposed to overcome this limitation by modifying this common failure rate assumption to permit changes,
.~ faults are removed, in the estimated failure rate of the remaining faults. These ‘reliability growth’
i1odels, however, have been based upon specific assumptions as to the ‘growth process’ that have little, if
«ay, practical justification,

hased on recent theoretical work of Lindsay and of the author, this paper demonstrates how the common
. nlure rate assumption may be directly replaced by the non-limiting and intuitively acceptable assumption
hat each fault possesses a potential unique failure rate of its own, independently drawn from -ome
mknown distribution. No restrictions whatsoever need to be placed on the unknown distribution —- any
gitimate probability distribution is an admissable candidate. The times of failure which occur in some
_criod of observation can then be used to find an estimator of the distribution of failure rates of all the
iaults. Having an estimator of this underlying distribution permits the calculation of various useful statistics
.egarding the reliability of the system at the termination of the observation period.

+Intil recently, no method was known of finding a maximum likelihood estimator of such an undcilying
histribution without the introduction of additional limiting assumptions. Lindsay’s theorem. introduced in
as 1983 article, provides st ¢ u methed. This theorem is quite genieral and is applicable to a broad range of
aasimum likelihood formulations. To avoid adding complications to the explanation of the technigue of
auilising Lindsay’s theorem, in this paper it is applied only to the straightforward, but somewhat simplistic,
,cliability model used by Jelinski and Moranda in their original work. Application of the theorem to the
.ore sophisticated extensions of this formulation that have evolved since their original work can be
«wcomplished following the general approach demonstrated here. ;

this paper introduces the theoretical basis in the form of Lindsay’s and related theorems. It then runs
‘hrough the Jelinski/Moranda (/M) formulation in a manner compatible with the application of Lindsay’s
Jhieorem. Various deticiencies in the J/M model are discussed so as to make clear the motivation tor the
relaxation ot /M’s common failure rate assumption. The relaxation of this assumption and the application
of Lindsay’s theorem are then discussed in detail. There follows a brief description of the numcrical
algorithm uscd in the solution and the paper concludes with the presentation of the results of some

.imulations that illustrate the improvement brought about by the relaxation of the common failure rate
assumption.

{'his paper is a summary of a considerable body of work, some of which has not been previously published.
L he intention is to introduce the basic concepts and techniques in a form that can be readily extended and
applied. Although some effort has been directed to exhibiting the overall logic of the derivations of the new
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mate. |, some of the individual steps are not immediately obvious. In the interest of keeping this paper
withi.. casonable bounds, the lengthy analysis needed to support these steps has not been displayed.

Lini. «’s theorem

Inth) cction, the main theorem developed by Lindsay (GIA1) is stated without proof, along with several
relate  results useful in applying this theorem to software reliability models. Both the theorem and the
relate. (csults will be given in the form independently developed by the author (GIAZ2). We shall begin with
some finitions. C is some compact subset of the ‘reals’, P{C} is the space of all probability distributions
on C. :"is the set of all functions on P of the following form:

() = kT yi(w) (1)

wherc .1issome finite integer, 7 belongs to P{C}, kis some constant independent of x and each y,(1) can be
writte i 11t the form

i) = [cfi(x)dn(x) (2)

and, r.uther, each f, is a function on C into the reals such that:
& f(+, = 0everywlicre

e f(..is everywhese continuous and bounded

@ f,(.is not everywhere zero.

Addiuonally:

1 Th. probability distribution o, belonging to P, is said to be a maximising probability distribution with
rest.oct to some function W belonging to Y if, and only if, Y(o) = max{y(n)|nEP}.

2 R{.)is the subset of P consisting of all maximising probability distributions with respect to 1.

3 B( ) is the support base of a probability distribution n if, and only if, B(x) = {x|x€C and every
n.:-hbourhood of x has a non-zero probability measure in 5t}

We . .1 now state the basic theorems in terms of the above notation.

1 7/ orem 1: for cach ¢ belonging to Y, there is at least one maximising distribution, that is R{y) is
N Cﬂ'lpty.

2 7T...rem 2 (Lindsay’s theorem): for each 1 belonging to Y, there is associated:
e . unique set of positive, non-zero, real values, {z;}i = 1,2,...,m}
& , subset of C, f{xp), defined by

BOp) = x| 3 A8 _ 3)

i=l 2z,

tch that
the following condition holds:

m
rap) <= § L2 < g
i
-u necessary and sufficient condition that a probability distribution &’ be a maximising probability
distribution with respect to ¢ (that is n’ € R(y) is that B(x)EB(Y) and y,(n') = z, for each

F=1,2,...,n.

3 T wem3:ifforcachopensetin Cthere is no set of positive, non-zero real coefficients {a]i=1,2,...,n)
su . that the equation

él afi(x)=n (5)

is 1isfied over the entire open set, then every member of R() is a discrete distribution without a density
c. . ipanent,
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Jelinski/Moranda revisited

+s mentioned previously, Lindsay’s theorem is a general result that permits the reformulation of many
,wblems origunally posed in terms of finding specific values of parameters that maximise a likelihood of
set of obsei vations. Using this theorem, one can often replace a limiting assumption that all ot the
pservations of the set are governed by a common value of a parameter by the less restrictive
ssumption that each observation of the set is associated with a potentially unique random value or the
arameter chosen from some common distribution. Lindsay’s theorem offers the necessary and suf-
wient conditions to recognise the probability distribution that maximises the likelihood of a vt of
[Iiservations without the necessity of limiting the space of admissible underlying probability distributions
1 any way.

m order that the effect of applying Lindsay’s theorem can be clearly illustrated in the context of the

PPN Iy iy 4

vaaximum likelinood techniques used in estimating software reliability measures, we shall first develop
e ‘classical’ J/M formulation (GIA3) to serve as a base.

t he ‘classical’ /M formulation arises from the following assumptions:
¢ There are initially /1 faults present in the system. -

The time to failure of each fault is an independent, identically distributed random variable. The failure
time distribution is negative exponential, with a rate of failure parameter p.

» When a fuilure occurs, the associated fauit is immediately removed — or, equivalently, the clock is
stopped until the fault 15 removed.

y1 some time t we wish to estimate m and p based on the number of failures that have occurred and the
vmes of their occurrence. Following J/M, we choose as estimators those values which maximisc the
nkelihood of the observed number of failures and the failure times. As we shall see, this can be readily
accomplished in two phases:

I By developing the expression for the estimator of p which maximises the likelihood of the
observations, given a fixed value of m.

> By substituting this expression, then finding the value of m which maximises the resulting likelihood
expression.

Without loss of generality. we can simplify the expressions involved in the solutions if we assume th.t the
nme variable is scaled such that the period of observation ends at ¢ = 1. For each of n observed failures,
v would therefore have 0 < 1, €1, fori = 1,2,...,n.
the individual likelihioed tactor v, associated with an observed failure at time 1, is
yi = pexp(—ps) (6a)
i'hie likelihood factor z associated with each fault which did not fail during the observation period is
z = exp(—p) (6b)

I'hus, given that the system inttially has m faults, the likelihood of n failures occurring at #,.f5,....8, 15

I n ‘
il =Tr;ty—l.n7- W exp[—p(m—n + El )] (7

it is useful to introduce the following changes of variables so that cases in which m — <« can be more
readily handled:

x = exp(—u) (8a)
o= (m—-n)im (8b)
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As a {uthér simplification, we shall ulso admit values of o corresponding to non-integer values of m. We
shall, l.owever, retain for the moment the restriction corresponding to keeping m finite, thatis o < 1.

MakiL.. these substitutions into (7) above and then taking the natural logarithm of each side yields

In(p) = nIn[~In(0)] + Z 4 In(x) + (—1-"_20-) In(x)

— nln(1-0) + 2 In[k(1-0) + nol 9)

We ci 1ind the value of x assoctate d with the maximum likelihood for any fixed o by differentiating (9) and
settin he result to zero. The maximiising value x' is given as

o n(l—c)
X = exp[ - W] (10)

Substi.tng this back into (9) produces the logarithm of the likelihood in terms of g alone, which after some
simplu .. ation of terms takes the following form:

() =k};’=l In[k(1-0) + no] + n[ln(n) — 1 — In((1-0)(Z¢,) + no)] (11)

Furtheomore
dln(y) & (n—k) ___n{n—31) (12)
b0 k=1 k(l=o)+no (1-0)(Zt) + no -

Itcan. shownthat (12)hasnorootin[0,1]if 2(Zt,)= n+1. This would imply that there is no finite value of
mwhi ' maximises the likelihood. This deficiency can be formally ‘corrected’ by admitting the pointo = 1,
that 15 the limit point as m — . The other calculations related to the maximisation of likelihood are not
pertur! :d by this addition to the domain of o, since (10), (11) and (12) remain well defined at o = 1 in all
non-tt11al cases (that is, at least one observed failure). If we make this addition to the domain of o, we can
show ihiat the value of o associated with the maximum likelihood is then given by

o =1,if2(S) = n + 1 (13a)
[ P __]._ n
o' =0,if X < - (13b)

If neiti, -r of the above two conditions is met, the maximising value of ¢’ is the solution obtained by setting
(12) il to zero and solving (implicitly) for o.

We ¢+ then express the solutions for i’ and o' in terms of the maximising values of p’ and m' by employing
the 1. ssves of (8a) und (8b):

W= —In{x") ) (14a)
m' = n/(l-¢") (14b)

A usc. | statistic, which we shall use in later comparisons, is the estimated failure rate at the termination of
obser wons G, which is given by

E=(m—-n)u ' (15)
For+ s of x’ and o’ which maximise the likelihood, this becomes
. n%o’
Y ==oc) 7o’ (16)

Of s;. 1l interest are the cases in which (13a) holds, which we shall refer to as the ‘infinite solution’ cases.

Ascu. veseen from (14b), o' = 1 implies that m’ is undefined, that is m’ = . We should note, however,
that « semains bounded; specifically, §' = n.
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Critici ans of the Jeninski/Moranda model

The Jii.1 formulation has been subject to much criticism. Before discussing the extensions to this model
made j.ossible by Lindsay’s theorem, it is worthwhile to discuss the basis of this criticism for two
reason  hirst, to understand which criticisms are addressed by the extensions discussed in this paper
and, sc ond. to put the remaining criticisms into proper perspective.

A fun. cuental criticism made of the J/M and related formulations is that the use of maximum
likelih. . as the critenion for choosing the estimators for the model’s parameters is intrinsically inferior
toa b cian approach (GIA4, 145}, It is not clear that this line of ciiticism, on the philosophical
level ... lcast, 1s enurely vahd. It can be shown that most maximum likelihood rules for choosing
estimu. 15 can be iccast as ‘extended’ Bayesian decision rules with suitable choices of a prior
distril. .on and a risk function ((GL16). This has been shown specifically in the case of the J/M model

by sev .l authors ((;1A7, GIA8). This type of criticism is not addressed by the extensions discussed in
this p., )

More « the point is the criticism that, in certain cases, the use of the maximum likelihood criterion
produc . 1esults that are undesirable, or even unacceptable, from a practical point of view and this can
be avuiiod by the use of a suitable Bavesian decision rule (GIA7-GIA9). The primary problems noted
in this . vard seem to be that the cstuumators, especially m, can be extremely sensitive to small changes

in the beervations and can often be "meaningless’, for example the ‘infinite solution’ cases in which
m=x alu=10

Some 1., these criticisms may be overstated. Firstly, many of the difficulties attributed to the use of the
maximia likelihood criterion are mtrinsic to the state of the problem and are not related to the choice
of critc. et for the esuimators. In view ot the fundamental assumption of the J/M model, that is that the
individ | tatlure tmes are random variables with a negative exponential distribution, one cannot with
any con.dence associate a given ‘pattern’ of observed failure times with a specific failure rate, unlfess the
numbes of observed fuailures is relatvely large. The apparent ability of some Bayesian formulations to
sharph histinguish between failure rates when the number of observations is relatively small is strictly
an attio ute of the particilur pnior distribution used — specifically, a small variance in the prior
distribuoon. In etfect the Bayesiun approach smoothly interpolates between some well-behaved prior
distribuitn (when the number of observations is relatively small) and the J/M solutions (when the
number ot observations is relatively large). Failing a strong justification for a particular weli-behaved
prior disinbution, however, it is not clear that this is anything more than a cosmetic improvement to

cover o or the fact that good estimators cannot be reliably found, based on the observations alone,
when th number of observed failures is relatively small.

Secondl . the ‘infinite solution’ (m = <« and p = 0), which has disturbed several critics, can in fact be
given  ‘uieaningful’ interpretanon. As we have shown above, the estimated failure rate at the
termin «-on of the observation period remains finite and is equal to #/t, the number of observed failures
divided ' the duranon of the obsenvition period. This can be interpreted as meaning that the time
betweos Lystem railures is itself negutively exponentially distributed (with failure rate paramcter n/t)
and th.t the estimated number of minal faults is so large that the removal of the observed faults has had
no me. wrable effect. One might plausibly argue that this interpretation still leaves the infinite solution
with th unacceptable’ charactenstic that it is not improbable for actual cases with a small number of
initial 1...1ts to give rise to observed tailure times which result in the infinite J/M solution. However, this
is anott. v artefact of the same problem of finding good estimators based on a small number of observed

failure  stating from (13a), one can readily show that the probability of this ‘contradiction’ (that is of
an act.. .. case meeting the J/M assumptions and giving rise to the infinite solution) goes to zero as the
period . observation and/or number vt observed failures increase.

Thirdl:  wd perhaps most importantly, much of the criticism seems to be motivated by the fact that the
appro. . lias not given consistently good results in practice, even when the number of obscrved failures
is relav 1v high. It 15 undemable that this criticism is well founded. The real difficulty here, however,
may w i be ‘unreabistic’ assumptions of the underlying failure model rather than its use of the
maxim. ... iikelihood cniterion. As has been noted, previously, extensions of the model in the direction
og;m;, ceet removal of faults, introduction of new faults etc address some aspects of this problem
(GlAl

1{A13). These extensions, however, retain the limiting assumption that the time to failure of
each fu 15 governed by some common tfailure rate parameter,

)




This common failure rate assumption has been singled out for criticism by several authors (GIA4, GIAS,
GIAL4, (;1A15) on the basis that it runs strongly counter to the common experience that there is wide
variation among software faults in their likelihood of being encountered and/or of causing a failure. One
intuitively believes that a gross error lying in the main line of code will have a considerably shorter mean
time to failure than a fault which resides in a seldom invoked subroutine and which would require some
particular juxtaposition of data to cause a failure. Furthermore, one can expect that any method which
ignores this variation in the failure rates of faults will produce poor results in practice. As can be scen from
(10) and (12}, the two quantities # and Zt, completely determine the J/M choice of es.imators, #1' and
o'. Thus, any combination of failure rates among the initially present faults that produces the same 7 and
Zt, for the observation period will result in identical parameter estimates using the J/M modcl. Other
approaches have been proposed (GIA15-GIAI9) which have eliminated the common failure rate

assumption, but only at the expense of introducing alternative assumptions which in turn seen: to lack
convincing justification,

As we shall show in the next section, Lindsay’s theorem allows us to replace the common failure rate
assumption with one that permits each fault to have its own, potentially unique, failure rate cho: cn from
some unknown but unrestiicted general distribution. This improvement alone should remove a tieguent
and signiticant cause of the observed poor performance of the J/M class of models. It should be naoted that
several other extensions appear to be compatible with the use of Lindsay’s theorem. for examplc model-

ling the impertect removal of faults, the introduction of new faults, changes in the definition of the “time’
inetric etc.

The Jelinski/Moranda model extended by use of Lindsay’s theorem

Using Lindsay’s theorem, we can reformulate the assumptions underlying the J/M model by elimmating
the common failure rate assumption:

1 There are initially m faults present in the system.

2 The time to failure of the ith fault is an independent random variable chosen from a negative
expornential distnbution with a rate of failure parameter y,.

3 Each rate of failure parameter y, is an independent, identically distributed random variable with

an unknuwn distribution (which can be any one of the many probability distributions on the non-
negative reals).

4 When a failure occurs, the associated fault is immediately removed or, equivalently, the clock is stopped
until the tault is removed.

We can think of assumptions 2 and 3 in the following terms. At the time that each fault is embedded in the
software system, an associated failure rate parameter p, (which characterises the likelihood that the
particular fau!t will cause « failure at any given instant) is randomly chosen from some unknown general
probability distribution ;1. The failure rate associated with each of the faults is chosen using the identical
.unknown) probability distribution. The time of failure of each fault ; is then independently chosen using a
aegative exponential distribution with that fault’s associated failure rate parameter p,.

At some time ¢, we wish to ¢stimate both m, the underlying general distribution which gives rise 10 the
railure rate purameters, and 2, the number of faults initially in the system. In the spirit of J/M, we choose

.5 estimators that probabtlity distribution ' and that number m’ which maximise the likelihoad of the
Dserved number of failures and the failure times.

t1 is easy to sce that this is not a traditional parameter estimation problem. Note that we are not secking
Julividual estimators of the p, parameters associated with the faults which have been observed to fail, but
~ather the underlying distnibution from which the failure rates of alf of the faults have been chosen.

.Iso note carcfully, however, that this is not a traditional ‘non-parametric’ formulation in which we
«lempt to find, free of paramctric constraints, the best (in some sense) probability distribution to directly
it' the observed system failure times. We have already indirectly built in (by assumptions 2 and 3) a
aditional parametric structuce for the system failure time distribution; that is, the system failure time
vsiribution is derived from the negative exponential failure time distributions (with parameters ,) of the

?
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individual faults. We are attempting to find a best ‘fit’ for the common distribution underlying the failure

. ate parameters of all the individual faults (both those with observed failures and those yet to fail) and not
just the observed failure rtate of the system, which is characteristic of traditional non-parameiric
jormulations. This “fit’ to the common distribution underlying all the failure rate parametersis the unifying

*.ridge that allows us, based on the observed failure times, to make estimates of the failure times of the
~cimaining faules in the system.

»s in the J/M model, we ccn proceed in two phases:
i Find the estimator for & which maximises the likelihood of the observations, given a fixed value of .

* Treat this estimator as a function of m, then find the value of m which maximises the resulting
likelihood.

r'o simplify the notation somewhat, we shall again adopt the convention that time is scaled such that the
.sriod of observation ends at ¢ = 1. We therefore must also have 0 <, < 1,fori = 1,2

Inder the ‘extended’ assumptions, the individual likelihood factor y;, associated with an observed futlure
i time 1, is the weighted average of the likelihood over the range of admissible p:

=[5 wexp(-us) dn(n) (17a)

Jdmilarly, the likelihood factor z, associated with a fault which did not fail during the observation period, is

z= f:exp(—pt) dn(p) (17h)
r'hus, given that the system has initially m faults, the likelihood of n failures occurring at t1,f,...,4, 1s
1 n
Ll ey B S 19

tsufore applying Lindsay’s theorem, it is again useful to substitute the change of variable for p previously
used in our J/M analysis:

x = exp(—p) (19)

tn applying this change of variable to (17a) and (17b) we shall take the limits of integration to be the closed
mterval [0,1], thus in effect including the limit point, p = o, as a potential support point for n. We can now
confirm that the premises of theorems 1, 2 and 3 are satisfied. (18) is of the form of (1), the z and y, factors
sre each of the form (2) with the integration (after the change of variables) being over a compact subset of
vhe reals and the integrands of (17a) and (17b) satisfy the conditions follcwing (2).

fheorem 1 can now be applicd to show that some probability distribution, n’ & P{[0,1]}, exists, which
«aaximises the likelihood detined by (18). We can also apply theorem 3 immediately. We first note that the
, values of theorem 3 correspond to the integrands of (17a) and (17b) (after the change of variables):

fi=—x"In(x) fori=1,2,..,n (20a)
fi=x fori=n+1,n+2,...,m {20b)

tt can be easily shown that no set of non-zero, positive, real coefficients can exist which satisty (5)

cverywhere over any open sct of C = [0,1]. Thus, n’ must be a discrete distribution without a density
~omponent. Accordingly, we can write

= {(w,,x)lr=12,...,v) 2n

(Jsing theorem 2 (Lindsay’s theorem), we can then identify B, the support base of n’, as a subset of {}:
vt |3 i) :
B = {x, IJZl Sy + (m—n) A~ ( v = m} o (22)

¥
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where:

it

yi wofix) - fori=1,2,..,n (23a)

Z =

M= EM{
=
=

-

(23b)

“

since the defining equation of (22) can only have a finite number of roots in {0,1], the number of points, v,
0 B’ must also be finite.

without loss of generality, we can treat f’ itself as the support base of i’ by adopting the convention that
24 y PP y pung

. =0 for each x, € B’ where x, & B. As an additional convenience, we shall further assume that the points
£ are ordered: xy < x; < ... < x,.

in addition 1o (22) and (23) above, the necessary and sufficient condition for n’ to be a maximising
Jistribution is then. by Lindsay’s theorem '

v filx)
iél (')

+ (m=—n) ?(Ln) <m forx & B’ ' (24)

. the number of initial faults m is fixed, (22), (23) and (24) can be used to find ', the failurc raie
abability distribution which maximises the likelihood as defined in (18). The estimated failure rate ai the
1inination ot observations, T, is then

L= —(m—n) Z wr Xy Inx) WE’: f;rlzr(x’) (23)

. .fore discussing the choice of a maximising value of m, let us first consider some of the
. wracteristics of the solution. As shown by (21), each initial fault can fall into any one of v
« «egories, each category distinguished by a failure rate i, and a probability w, that a specified fauit
t lungs to thut category. Mote that the solution furnishes both the number of categories v and the
«:lues of the x,w pairs. Also note that, since the failure rate associated with each fault is an

1. lependent random choice (by assumption 3), the solution offers no assurance that the actual
i+ oportion of taults in the rth category equals w,.

}i 15 also of some interest to note that x,, = 1 (that is u,, = 0) can be a member of the solution set for finite 1.
¢ e this implies that any assocuated fault has a zero failure rate, we have the somewhat paradoxical result
(.. .1 a fault of this category can neither have failed in the period of observation or fail at any time thereatier.
I ctfect, the solution removes all such faults from the active set of initial faults.

{ fortunately, some of the coefficients of (22), (23) and (24) are ill-behaved as m — o and these equations

w not suitable for investigating the behaviour of the solution for large values of m. Specifically one can
show that, as o1 —

w(n')—> 0, forr<v . (26a)
wy(n')— 1 (26b).

x,(n") — 1 | (260)
y(n'y—0,fori=12,....n ‘ (261
z(n')— 1 (26¢)

11 .sever, one can also show that as m — o the products mw,(s’), m[1—x,(x’)] and my,(x’) remain finite
a. ' can limit to some value greater than zero. We can take advantage of this fact to perform a change of
v aibles that will result in well-behaved coefficients for all values of m:

o= (m—n)im (274)
o = yf/(1-~a), fori=1.2,...,n (27L)
7
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A =w(l-x)(1—0),forr=12,...,v : (27c)

After some algebraic manipulatior;, we can replace (22}, (23) and (24) with the following equivalent set of
«quations:

filx) nox, _ T ,
B—{XL 1a(:rt)+ ) n} (28)
where .
=3 )Elf—(;)) fori=1,2,...,n (29)
vy =1 - (1 - o) élx,)] (29b)
and
s fla) % v (a0)

R ED) (')

1

+Ising the samie change of variables, we also obtain

_ __ho "Xx,ln(x) ”
S R (5 oy
ny) = E In(a,) + ( ln(y) + Z ln[k(l 0) + no ()
rorag =1, (32) reduces to
In() = £, In(a) = n (Z1,) + n In(n) (33)

.aking the partial differential of (23) with respect to ¢ and evaluating at i’ produces

Sl =op (knlku("o)kl mo T Inlv(@)D (34)

.15 conjectuied, by analogy with (12), that (34) has at most one zero in [0,1]. If so, we can show that the
alue of g associated with the maximum likelihood is then given by

n (7
@il > imato=1 (35a)

o' =1, if ’Zl ™) o R

o =0, it Eo<mpy) ato=0 (35b)

tf neither of these conditions is true, the maximising value of o’ is obtained by solving (34) for the valuc of o
that results in the equation being equal to zero. (If our conjecture regarding the single zero of (34) is not
irue, all the local maxima would have to be compared.)

A numerical algorithm

We can characterise the solution of (28) to (30) for some fixed value of o as the following set:
G(o) = {(x,, M)|r =1,2,...,v} (36)

tormed from the members of the support set of t’ and transformations of the associated probability weights
« tn accordance with (27¢). In representing the solution in this form, we should take note of the fact that
27c) implies that x,, =1 2 ), = 0, except in the case where 0 = 1. If o = 1, it can be shown that x, == 1 is
«tways a member of the support set of " and that A, can take on any value from zero to one.
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Numerical sclutions determining this set present some difficulties. In contrast to (10) of the J/M model,
(28) 10 (30) have no closed-form solution. Furthermore, any straightforward approach to an iterative
solution is hampered by the fact that we initially have no information regarding the number of points v in
the support of ',

Following the general approach suggested by Lindsay (GIA1), the solution algorithm we have used to
find GG(a) proceeds by the following steps:

1 Initialise G to a single pair (x;, Aq) where x; is the J/M solution given by (10) and A; equals
(l=x))/(1=0). (If 6 = 1, then Ay = 1.)

2 Add a pair to G fo1 each local maximum point of the defining equation of (28) where the equation
equals or exceeds n. The x value of the pair should be set to the location of the maximum and the A
value of the pair should be set to zero.

3 Ilolding the x, values of the pairs of G constant, find the A, values which maximise (32) (or (33), if
appropriate), subject to either

,2; A= 1 if1eG . (37a)
o1
Y. M1l=0) _ .
rgl —(—1—:?;)—- =1 otherwise (37b)
c‘l‘«l
o<\ (37¢)
Scenario JIM Giammo
Initial fauits, m
Mean 165.0 134.1 161.8
Std dev 0.0 5.0 36.0
Failure rate at term, ¢
Mean 33.1 8.3 26.9
Std dev 4.4 3.5 9.5
{H{estimate) — ¢(scenario)
Mean - - -2438 -6.2 )
Std dev - 6.9 11.9
Root n of likelihood, yw1/n
Mean - 78.4 831
Std dev - 5.0 49
Fuure 1: Summary results
»
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Giammo

—
Number of Failure rate Root n of
initial faults at termination likehhood

Case Fails Scenario JIM Giammo Scenario JIM Giammo JM Giammo
1 130 1650 1312 181.1 35.0 5.0 272 81.21 85 44
2 127 1650 128.6 133.9 380 66 173 76 24 78 66
3 134 1650 138.2 199.7 310 141 42.5 7126 76 26
4 133 1650 134 4 144 8 32.0 6.1 21.1 82 68 85 80
5 134 1650 136 3 157.2 31.0 8.8 29.2 78.13 83 20
6 135 1650 1392 1527 30.0 14.3 30.0 72.13 74 63
7 131 1650 132.2 148.1 340 51 247 8275 88 39
8 131 1650 132.4 136.3 340 6.1 147 8160 85 45
9 136 1650 1383 157 0 290 89 20.2 7897 82.78
10 132 1650 1342 164.2 33.0 8.6 289 76 53 79 11
11 133 1650 137 2 3282 320 140 50.7 70.93 8277
12 133 1650 134 4 143 8 320 6.2 208 8309 87 43
13 142 1650 1447 153.0 23.0 10.3 24.9 81.84 88.22
14 127 1650 1312 1915 380 14.1 427 67 07 72 60
15 132 1650 1332 142 4 33.0 51 189 8283 85.80
16 123 1650 124 8 141.7 42.0 7.3 26.5 7288 7792
17 122 1650 122.1 123.6 43.0 06 59 87 20 90 95
18 131 1650 131 4 136.5 34.0 1.9 133 90.91 9387
19 122 1650 124 1 1419 43.0 7.9 267 7047 73 E3
b0 133 1650 137 4 182.3 320 148 41.7 7055 7561
. N 126 1650 127 4 1412 390 58 222 78 56 82 01
¢ P22 133 165.0 1352 168.4 32.0 8.8 360 77 83 87 9
: Pou3 133 1650 1352 1915 320 87 400 76 98 87 i
- o4 137 1650 1401 1751 28.0 115 377 76 95 82 &1
! 25 140 1650 1435 271.0 250 12.5 44 3 76 86 83 6
: 26 123 1650 123 4 127 2 420 18 11.2 85 97 88 &1
L7 135 1650 136 2 139.5 30.0 52 131 85.10 88 1",
i 8 140 1650 142 6 1835 250 10.1 265 80 57 84 02
| 29 133 1650 136 1 1597 32.0 111 329 74 22 78 21
| 30 130 1650 131.4 1658 35.0 59 28.2 79 56 83 71
31 129 1650 1312 147 2 360 8.5 29.1 75.24 84 02
32 134 1650 136 3 152.0 31.0 8.8 276 78 13 8189
33 138 1650 140.1 158.5 27.0 83 285 8273 87 75
34 128 1650 1299 243.2 37.0 7.6 329 7582 8123
35 133 1650 1355 153.9 320 9.6 32.0 76 73 88 74
36 127 1650 128 6 132 0 380 67 14.0 7713 78 26
37 133 1650 134 4 1417 320 61 193 8212 86 47
318 131 1650 1335 1510 340 9.5 29 4 7570 80 74
39 138 1650 1420 150.2 270 13.9 269 74 58 7900
40 130 1650 1306 134.5 35.0 3.1 12.1 88 85 91 23
41 130 1650 131.2 181.1 35.0 50 272 81 21 85 44
42 127 1650 1286 133.9 38.0 6.6 17 3 76 24 78 66
43 134 1650 1382 199.7 310 141 425 7126 76.20
44 133 1650 134 4 144 8 320 61 211 8268 85 8"
45 134 1650 136.3 157 2 310 88 292 7813 83 20
46 135 1650 139 2 152.7 30.0 14 3 300 7213 74 63
47 131 1650 1322 148.1 340 5.1 247 8275 88 39
48 131 1650 132 4 136.3 34.0 6.1 147 8160 85 45
49 136 1650 1383 157 0 290 8.9 292 78 97 8278
50 132 1650 134 2 164 2 33.0 8.6 28.9 76 53 79. 11

4

4

:

Figure 2: Individual case results

{
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| a/bedllows from the requircment that Zw, = 1, which can be evaluated dircctly using the % s if 1 € .
t +/a) can be derived by evaluating the defining equation in (28) at x = 1 witho = 1.

4 1 numinate pairs from G if maximisation of the likelihood would tend to cause 4, to violate (37c).

5 epeatsteps 2, 3 and 4 until the maximum value of the defining equation in (28) is within some € of n.

Nu.aerical results

A t.stscenario was constructed to explore the degree of improvement in various estimators afforded by the
relination of the common failure rate assumption of the basic J/M formulation; 50 test cases were
indvpendently gencrated. Estimators for m, the total number of faults, €, the failure rate at the termination
of wtservations and W, the likelihood of the observations, were developed using the J/M equations and the
col. sponding equations of the J/M model extended by Lindsay’s theorem. Various comparisons were
the made between these results and the ‘true’ results from the generating scenario.

The »cenario used to generate the test cases assumed the following:
1 'tiwe software system initially contained 165 faults.
2 “1ue time to failure of each fault was a random variable with a negative exponential distribution.

3 1 he failure rate parameter associated with 75 of the faults was 10 failures per unit time: the failure rate
[ .rameter assouated with 90 of the faults was one failure per unit time.

4 | ulures were observed for one unit of time. The faults associated with each failure occurring in this
1 nad were nmimediately removed.

Th. .cenario was not constructed to be a ‘typical’ case. The parameters were chosen to represent o
sitt. on where it was felt that the common failure rate assumption of the J/M formulation would resultin a
sign cant misestumate of both the intial number of faults in the system and the faillure rate at the
ter nation of observations. It was hoped that an improvement in these estimators due to the reluxation of
thi  sumption would be clearly shown by a comparison of the results,

Ou e other hand, the scenario should not be considered as necessarily atypical. The number of faults
she -Jd not be cansidered as excessive for a large complex system. The pattern of failure times could well
cor. .pond to a situation in which 75 of the 165 faults are in commonly encountered routines and are
ren. .vud in the early phases of system testing, while the remaining 90 are more rarely encountered. The
pen - 1 of observalion should correspond to a point in time at which the rate of failures has fallen to a level
(les :han five per cent of the mnitial failure rate) at which a decision involving the current failure rate and/or
the « unber of ramaining faults nugit be called for.

Fift cuses were independently wenerated and evaluated. Figure 1 presents a statistical summury of the
resi s tor the 50 cases as a whole, Figure 2 gives individual results for each of the 30 cases.

In y. neral, the results confirmed our expectations. The relaxation of the common failure rate assumption
broasht about a significant improvement in the estimates, both of the total number of initial faults and of ¢
the 1 .dure rate at the termination of observations. As shown in Figure 1, the mean difference between the
estin. ited number of inital faults and the actual number improved from —30.9 to —3.2, indicating a
signincant reduction in the bias ot the estimator. The variance of the estimate remained high (standard
deviadon equal to 36.0), however, the distribution of the difference appearing highly skewed with a large
tail <0 the positive side. The mean difference between the estimated and actual failure rates at the
ternunation of observations improved from —24.8 to —6.2, again showing a signiticant reduction in the
bias ot the estimator. The variance ot this estimate was significantly lower (standard deviation equal to
11.9} than in the case of the estimate of the number of initial faults, with the distribution of the differ-
ence bhetween estimated and actual values being much more symmetric.

The iinprovement was also reflected in the increase in the likelihood of the observations. The statistic
shov nin Figures 1 and 2 is the nth root (where # is the number of observed failures) of the likelihood v, as
deli.:d by means of (11) and (32). Since the J/M solution is also a candidate solution in the revised
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formulation (and not vice versa), the likelihood of the J/M solution must always be less than or equal to the
likelihood of the solution under the revised assumptions. This is clearly shown in Figure 2.

In summary, the relaxation of the common failure rate assumption has shown the expected improvements,
as compared to the standard J/M formulation, in removing the bias associated with this assumption in
estimating two useful statistics, the number of initial faults and the failure rate at the termination of the

observations. However, the resultant estimators still exhibit the characteristically high variance of
estimators of this type.






