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A theorem recently published by Lindsay 
‘furnishes the conditions for soliVing 
maximum likelihood formulations which 
seek to find a maximising distribution1 of 
some parameter without placing imy 
restriction on the distribution other t11:1n 
that it be a legitimate probability distriha- 
tion. Reliance on this theorem in lhe 
context of the Jelinski/iVoranda a~)pro;lcb 
to the estimation of Soft\\ ;Sa’a;: Idiilt;EfEl!r 
permiis the f~rm~3l2tion t:i be I cvi. 01, 
replacing the assunlption &hat each faul1 is 
equally likely to cause a faihu-e with the 
less limiting assumption that each f;mlt 
possesses its own potentially unique failure 
rate parameter chosen from some prol)ilb- 
ility distribution common to all the faults. 
This paper introduces Lindsay’s thetrrc:rn 
and illustrates its use by applying id 10 
Jelinski’s and Moranda’s original :;ol’t- 
ware reliability model. 
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- Relaxation of the common fdlw 
rate assumption in modellilag : software reliabi~il~ 

1 ram the time the first software reliability measurement models were introduced over a decade ago, the 
r,squently made assumption that each fault in the system contributes equally at every point in time to the 
l’robability of system failure has been viewed as a serious limitation. Various approaches have been 
1 ,roposed to overcome this lirnlt;ition by modifying this common failure rate assumption to permit changes, 
,I, faults are removed. in the &mated failure rate of the remaining faults. These ‘reliability growth’ 
i.lodels. however, have been based upon specific assumptions as to the ‘growth process’ that have little, if 
..ny, practical justification. 

biased on recent theoretical dark of Lindsay and of the author, this paper demnnstrates how the conlmon 
1 lllure rate assumption may bc directly replaced by the non-limiting and intuitively acceptable assuniplion 
Ilat each fault possesses a potential unique failure rate of its own, independently drown from \ome 
,nknown distribution. No restrictions whatsoever need to be placed on the unknown distribution -- any 
s,.gitimate probability distribution is an admissable candidate. The times of failure which occur in some 
,,criod of observation can then be used to find an estimator of the distribution of failure rates of all the 
1 .iults. Having an estimator of this underlying distribution permits the calculation of various useful statis its 
;Lgarding the reliability of the system at the termination of the observation period. 

8 ir,til recently, no method was known of finding a maximum likelihood estimator of such an undcll>,ing 
ll:,tribution v. lthout the inrrcicluction of additional limiting assumptions. Lindsay’s theorem. introducctd in 
,I:; 1963 article, provides SI cil ;I method. This theorem is quite gerieral and is applicable to a broad r;lnsc’ of 
,l;lximum lihclihood formul,lti~,rls. 1’0 avoid adding complications to the explnnntiljn of the techni~lu~ of 

,lrrlising Lindhsy’s theorem, in this paper it is applied only to the straightforward, but somewhat siml)lr\tic, 
, cliability model used by Jelinski and Moranda in their original work. Application of the theorem IO the 
,ilk)re sophisticated extensions of this formulation that have evolved since their original work C‘;III be 
,ccomplished following the general approach demonstrated here. / 

1.itis paper introduces the theoretical basis in the form of Lindsay’s and related theorems. It the11 I-uns 
1 hrough the .lelinski/hlorand~~ (J/M) formulation in a manner compatible with the application of Lindh;ly’s 
Llleorem. Various deticiencies in the J/M model are discussed so as to make clear the motivation tor the 
lclaxation ot I/M’s common failure rate assumption. The relaxation of this assumption and the appll~.~\tlon 
,~t’ Lindsay’s theorem are tll~n discussed in detail. There follows a brief description of the numerical 
.ilgorithm us~4 in the solution and the paper concludes with the presentation of the results ol some 
.,lrnulations that illustrate the Improvement brought about by the relaxation of the common failure rate 
.t:,sumption. 

I”his paper is a summary of a considerable body of work, some of which has not been previously publIshed. 
I he intrntiou is to introduce the: basic concepts and techniques in a form that can be readily extentlctl iind 
;ii)plied. Altl~ough some efiort has been directed to exhibiting the overall logicof the derivations of tilt: new 



mate. I, some of tllr: individual steps ar c not immediately obvious. In the interest of keeping this paper 
withl,, ,:,isonable h,lunds. the l:ngtllv a&ysis needed to support these steps has not been displ;iyed. 

Einr I ‘F’S theorem 

In thr i:l:tion, the rlluin theorem developed by Lindsay (GIAI) is stated without proof, along with several 
relati results useful in applying this theorem to software reliability models. Both the theorem and the 
relatL , usults will hi: given in the form independently developed by the author (GZA2). We shall begin with 
some ~:r‘mitions. C is some compact subset of the ‘reals’, P{ C} is the space of all probability distributions 
0nC. a is the set ot’ all functions on I’ of the following form: 

whet-1 ,I is some finice integer, TT belongs to P{ C}, kis some constant independent ofn and each y,(n) can be 
writtt iI 111 the form 

and, I I I it her, each /; is a function on C into the reals such that: 
@ fib 1 3 0 everywllere 
@ f,[., is everywhere: continuous and bounded 
8 f,(.$ , is not everyiirhere zero. 

Addiilc,nally: 

1 Th, probability distribution 0, belonging to P, is said to be a muximising probability disrribkm with 
rer,,.‘cf ro samejirnction 11 belonging to Y if, and only if, q(e) = max{q(n)lnEP}. 

2 R( I, ) is the subset of P consistIne of all maximising probability distributions with respect to 111. 

3 Bi I is the sup~~orr base of u probability distribution IIT if, and only if, B(Jc) = {x]xEC and every 
nul:ht)ourhood ot‘x has a non-zero probability measure in rc}. 

We I ,.I now state the basic theorems in terms of the above notation. 

1 1’) ,ITE~~ 1: for znch I$ belonging to Y, there is at least one maximising distribution, that is R(q) is 
nt,O. empty. 

2 7,’ ,)rcm 2 (Lindsay’s theorem): for each I/J belonging to Y, there is associated: 
@ unique set of positive, non-zero, real values, {z$ = 1,2,...,m} 
B , subset of C, /‘I, defined by 

tch that 
the following condition holds: ‘ 

x B p(q) -=Ssi!Z,e < m (4) ‘ 

;I necessary and sufficient condition that a probability distribution n’ be a maximising probnbilit!, 
tlistributiorl with respect to 41 (that is IT’ E R(q) is that B(Jc’)CP(I$) and y,(rt’) = z, for each 
1’ = 1,2 ,..., ~1. 

3 7-,, ~etn 3: if for each open set in C there is no set of positive, non-zero real coefficients (a,li = 1,2,...,0) 
SII !, that the equation 

(5) 
is li#Jied over the entire open set, then every member of R(v) is a discrete distribution without a density 
cc Ii):Inent. 



I elinskihh-anda revisited 

Is mentioned previously, Lindsay’s theorem is a general result that permits the reformulation of nlilny 
,Ioblems origtnaliy posed in terms of finding specific values of parameters that maximise a likelihooll of 

set of obsc, vations. IJsing this theorem, one can often replace a limiting assumption that all oi the 
i)servations <it’ the set art: governed by a common value of a parameter by the less restrt<tJ~~e 
hsumption th,rt each observati:jn of the set is associated with a potentially unique random value or rllc 
.~~ameter chosen from some common distribution. Lindsay’s theorem offers the necessary anti \uf- 
!c:lent conditrans to recognisc the probability distribution that maximises the likelihood of a :(.t of 
#l1servations fvtthout the nrccsstty of limiting the space of admissible underlying probability distribrrliorrs 
‘I .my way. 

1~1 order that the effect of applying Lindsay’s theorem can be clearly illustrated in the context oi the 
,taximum likelihood techniques used in estimating software reliability measures. we shall first develop 

I !ti: ‘classical’ .lilvI formulation (GIA3) to serve as a base. 

I he ‘classical’ J/M formulation arises from the following assumptions: 

I There are initially m faults present in the system. .a 

’ The time to failure of each fault is an independent, identically distributed random variable. The failure 
time distrltlution is negative exponential, with a rate of failure parameter ft. 

I When a t‘;rtlrtre occurs, the associated fault is immediately removed - or, equivalently, the clock is 
stopped until the fault 1s removed. 

41 some time I we wish to estimate nr and u based on the number of failures that have occurred and the 
limes of thetr occurrence. Following J/M, we choose as estimators those values which maximise the 
rtlcelihood of the observed number of failures and the failure times. As we shall see, this can be- readily 
.rccomplished in two phases: 

I By developing the expression for the estimator of u which maximises the likelihood of the 
observations, given a fixed value of m. 

? By substituting this expression, then finding the value of m which maximises the resulting likelihood 
expression. 

iVithout loss of generality. we can simplify the expressions involved in the solutions if we assume th.lt the 
11me variable is scaled such that the period of observation ends at c = 1. For each of H obsened failures, 
‘cc would therefore have 0 < I, Sl, for i = 1,2 ,..., n. 

I’IIC individu::l likelihooti lactcor .v, associated with an observed failure at time I, is 

yi = P exp(-w) (hi) 

Ihe likelihood factor z associated with each fault which did not fail during the observation period is 

2 = exp(-u) (;,b) 

I’llus, given that the system inttially has m faults, the likelihood of n failures occurring at f,.f2,...,t,, IS 

It is useful to introduce the following changes of variables so that cases in which m -+ ~0 can be more 
readily handled: 

x = exp(-p) 

u = (m-n)/m 



As n ~,JJ th& simpli’flcation, we shall also admit values of o corresponding to non-integer values of UZ. We 
shall, L.)wever, retain for the moment the restriction corresponding to keeping m finite, that is o < 1. 

Makil,. these substitutions into (7) above and then taking i&he natural logarithm of each side yields 

ln(lll) = tz ln[ -In(x)] + ;z, fi In(x) -t & W) 

- n ln(l-a) fki, In[k(l-o) + ~a] (9) 

We c;l lilld the value c,fXassoclat(.d with the maximum likelihood for any fixed u by differentiating (9) and 
settin ltt: result to ycro. The maxlnlising value x’ is given as 

SubsrlL1 Iclng this back into (9) prodllccs the logarithm of the likelihood in te)ms of u alone, which after some 
simplli,, ation of terms takes the fcJllWVhg form: 

hiilp) =k$, In[k(l -a) + no] + n[ln(n) - 1 - In((l-u)(ZtJ + no)] 01) 

Furthc,, lllL)re 

6 In(1ll) -- z (n-k) 
ba ktl X-(1-0) + na - (l-Zy(E,a”,’ nu (W 

It can, shown that (12) has no root in [O,l] if2(Cl,)> n+l. This would imply that there is no finite value of 
IPI whl, ,I ruaximises the likelihood. This deficiency can be formally ‘corrected’ by admitting the point o = 1, 
that 13 IIIL’ limit point as m -+ m. The other calculations related to the maximisation of likelihood are not 
perturl :d by this addition to the domain of o, since (lo), (11) and (12) remain well defined at o = 1 in all 
non-trl, ral cases (that is, at least one observed failure). If we make this addition to the domain of u, we can 
show ill.tt the value of o associated \+ith the maximum likelihood is then given by 

u’ = 1, if 2(Ct,) 2 n f 1 (13a) 

0’ = 0, if ; 2.. s L- 
k=l k J% (13b) 

If neili, ‘r of the above two condition:, is met, the maximising value of o’ is the solution obtained by setting 
(12) c~~I:.II to zero and solving (imphLitly) for o. 

WC c ;, Ihen exprcsb the solutions for-~’ and o’ in terms of the maximising valuesof~t’ and m’ by employing 
thL Il. 1 \es of (&I) :III~ (8b): 

11’ = -In(Y) 

m’ = nl( 1 -a’) 

. W> 

(ldb) 

A USI I .I :,tatistic. which we shall use in later comparisons, is the estimatedfaihe rare at rhe rermittariotr of 
obsrt I hums 1;, which is given by 

L = (m-h (15) 
For 1 l~~:~ of .y’ and o’ which maximisr: the likelihood, this becomes 

2 I 
r’ = (1-u);;) + nu’ (16) 

Of sI, 1.11 interest ;Itc the cases in which (13a) holds, which we shall refer to as the ‘infinite solution’ cases. 
As c;t (9~ seen from ( 13b), o’ = 1 implies that 171’ is undefined, that is m’ = 03, We should note, however, 
that I ~ornains boulltled; specifically, L,’ = n. 
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CAticE .ms of the ,leninski/iVIornncla model  

The J;i, I formulation has been subject to much criticism. Before discussing the extensions to this mode l 
made ~.~)ssib!e by Lindsay’s theoreln, it is worthwhile to discuss the basis of this criticism for two 
reason tlrst. to understand which criticisms are addressed by the extensions discussed in this paper 
and. 5<’ <)nJ. to put the remaining criticisms into proper perspective. 

A furltV :nlental criticism made of the J/M and related formulations is that the use of maximum 
likelit]. II as the critcrlon for choo>irlg the estimators for the mode l’s parameters is intrinsically inferior 
to a  Ii :*.ian appro.lch (GI.44. C;1:14). It is not clear that this line of criticism, on the philosophical 
level I,, I~ast. IS entirety valid. It can be shown that most maximum likelihood rules for choosing 
estlma I I> can be I[:cast as ‘extentlcd’ Bayesian decision rules with suitable choices of a  prior 
distrit 1  ,&rn and a  riL,k functton (Gf,lhJ. This has been shown specifically in the case of the J&l mode l 
by se\ .II authors I( ;fr17, G f.48). 1’111s type of criticism is not addressed by the extensions discussed in 
this p&l, I. 

More ( ttle point is the criticism that, in certain cases, the use of the maximum likelihood criterion 
produ[ lesults that are undesirahl~:. or even unacceptable, from a  practical point of view and this can 
be avo1.1.4 by the USC of a  suitable Hayesian decision rule (GZA7-GIA9). The primary problems noted 
in this , c;lrd seem to be that the csflmators, especially m, can be extremely sensitive to small changes 
in the !Ia,zrvatlons :~nd can often bc ‘mean ingless’, for example the ‘infinite solution’ cases in which 
,,I = 5; IIt1 !I = 0. 

Some L,, lhcse critici\rns may be overstated. F irstly, many of the difficulties attributed to the use of the 
max~m~~l,~ likelihood c,riterion are lntrlnsic to the state of the problem and are not related to the choice 
of crifc, II~ for the cstImators. In view ot the fundamental assumption of the J/M mode l, that is that the 
indlvi&; II tailure tlntcs are randonl variables with a  negative exponential distribution. one cannot with 
any co~~~.~l~nce assuc~;~tc a given ‘pattern’ of observed failure times with a  specific failure rate, &ess r/le 
r111tH tIca, ,)I ohsenwl lC~//l~re~ is r.rlrrrl~~l~ large. The apparent ability of some Bayesian formulations to 
sharpi! Ir\tinguish between failure r:ltcs when the number  of observations is relatively small is strictly 
an  attl ,, IIIC of the i>;lrficllar prior distribution used - specifically, a  small varial,ce in tile prior 
tllstrit)~.i!l)r~. In ctfcct the Bayesian ;rpproach smoothly interpolates between some well-behaved prior 
distribL,i! )II (when thl: number  of observations is relatively small) and the J/M solutions (when the 
numbcl &)f observattons is relatively large). Failing a  strong justification for a  particular well-behaved 
prior tll<.lrlbution. however, it is not clear that this is anything more than a  cosmetic improvement to 
cover 0’. Jr the fact that good estimators cannot be  reliably found, based on the observations alone, 
when tll number  of rIbserved failures is relatively small. 

Seconcll , the ‘infinite solution’ (IN = m  and 11 = 0), which has disturbed several critics, can in fact be  
given iI ‘mean ingful inrerpretntlon. .\s we have shown above, the estimated failure rate at thi: 
tcrmirl (I’~ PII of the ob,crvatlon period remains finite and is equal to II/~, the number  of observed failures 
divide&l ‘1~ the duration of the ob:,crv I(lon period. This can be interpreted as mean ing that the time  
bcttvci , l~~s~c~~z r,litures is itseli ntig;lti,acly exponentially distributed (with failure rate parnmcter n/r) 
and th.,l ItIe cstlmatcd number  of Inill:ll faults is so large that the removal of the observed faults has had 
no mc,, .Ir.lblr effect. One m ight plausibly argue that this interpretation still leaves the infiniti solution 
with tII unacccptablti’ characrerihtic that it is not improbable for actual cases with a  sn~nll number  of 
initial l..511rs to give rise to observed t;rilure times which result in the jrzfir& J/M solution. However, this 
is anolr. i Mefact of [he same prol)tcrn of finding good estimators based on a  sn~all number  of observed 
failure ‘itilting from 113a), one cm readily show that the probability of this ‘contradiction’ (that is of 
an  actI& ‘. case mcctirie the J/h1 assumptions and giving rise to the infinite solution) goes to zero as the ._ 
period ,# observation Lmd!or number  ot observed failures increase. 

ThirdI, (lid perhaps: most importantly, much of the criticism seems to be motivated by the fact that the 
appro, !, 
is relal 

1~s not $!ivcn consistently good results in practice, even when the number  of observed failures 
I!,’ hi&. It 15  undeniable that this criticism is well founded. The real difficulty here, however, 

may \‘. II IX ; unrcaliAc’ assumptions of the underlying failure mode l rather than its use of the 
maxim 1~1 likelihood ,rriterion. AS ha\ been noted, previously, extensions of the mode l in the direction 
of im[l .I~:~:t removal of faults, introduction of new faults etc address some aspects of this problem 
(Cf.4 I 1/,113). *l‘hc\c extensions, however, retain the lim iting assumption that the time  to failure of 
each f,; cl 15  govcrncd by some common failure rate parameter. 



This common failure rate assumption has been singled out for criticism by several authors (GI/1J, GI.4.5, 
GIrlIJ, C;/.-11.5) on the IX~SIS that it runs strongly counter to the common experience that thclc is wide 
variation among software t’aults in their likelihood of being encountered and/or of causing a failure. One 
intuitively believes that ;I gross error lying in the main line of code will have a considerably shor tel mean 
time to failure than a fault which resides in a seldom invoked subroutine and which would requtrc some 
particular luxtaposition of tlata to cause a failure. Furthermore, one can expect that any method which 
ignores this variation in the failure rates of faults will produce poor results in practice. As can be st’en from 
(10) and ( I?), the two cluantities tz and X’r, completely determine the J/M choice of es,imators, ~1’ and 
u’. Thus, any combination of failure rates among the initially present faults that produces the same n and 
Zr, for the observation period will result in identical parameter estimates using the J/hi model. Other 
approaches have been pro;>osed (GIA15-GZAI9) which have eliminated the common failllrc rate 
assumption. but only at the expense of introducing alternative assumptions which in turn seerll to lack 
convincing justification. 

‘4s we shall show in the nest section, Lindsay’s theorem alloivs us to replace the common failrlrk: rate 
,asumptioll with one that l)crmlts each fault to have its own, potentially unique, failure rate cha: CII from 
home unknown but unrcstrictetl general distribution. This improvement alone should remove a tlL:cluent 

. ,md signit’icant cause of the observed poor performance of the J/M class of models. It should be notud that 
:;everal other extensions appear to be compatible with the use of Lindsay’s theorem, for example model- 
ling the irnl’crfect remov,ll of faults, the introduction of new faults, changes in the definition of t11e ‘time’ 
lnetrtc etc. 

The JelinsMMoranda model extended by use of Lindsay’s theorem 

YJsing Lindsay’s theorem, we can reformulate the assumptions underlying the JIM model by elilnlnating 
the common failure rate assumption: 

1 There ;lr< initially tn faults present in the system. 

2 The time to failure of the ith fault is an independent random variable chosen from a ncgativc 
exponcnlial tiistrtbu~lou \r,ith 3 rate of failure parameter IL,. 

3 Each rntc: of failure parameter kl, is an independent, identically distributed random variable wit11 
an unkm~wn distributmn (which can be any one of the many probability distributions on the non- 
negative t-cats). 

1 When a failure occurs, the associated fault is immediately removed or, equivalently, the clock is stopped 
until the t;rult is removed. 

We can think of assumptions I! and 3 in the following terms. At the time that each fault is embeddec! in the 
>oftware s\‘stcm, an associated failure rate parameter p, (which charscterises the likelihood 111at the 
i~articular inlj!t will cause :I fiiilure at any given instant) is randomly chosen from some unknown gL‘ncral 
i)robability cllstrihuiion JX. The t’;tilure rate associated with each of the faults is chosen using the identical 
I unknown) p~ohability distribution. The time of failure of each fault fi is then independently chosen using a 
Iltigative exponential tlistrlbution with that fault’s associated failure rate parameter 11~. 

It some time I, we wish to &mate both x, the underlying general distribution which gi\‘es rise ~o’thc 
i,lilure rate parameters, and ttl. the number of faults initially in the system. In the spirit of J%l, we cl~oose 
I ‘; estimators that probabilily tllstribution x’ and that number m’ which maximise the likelihood c)t’ the 
.bservcd number of failures and the failure times. 

(I is easy to SCL’ that this is nol a traditional parameter estimation problem. Note that we are not scuking 
.Ildividual cstlmntors of the 11, parameters associated with the faults which have been observed to fall. but 
.\ther the umlcrlying distrll)utlon from which the failure rates of all of the faults have been chosen. 

.Iso note carefully, however, that this is not a traditional ‘non-parametric’ formulation in which we 
,,\cmpt to find, free of paramtitric constraints, the best (in some sense) probability distribution to dircl.!ly 
II’ the obsel-vcd system failllre times. We have already indirectly built in (by assumptions 2 and 3) a 
.tllitional parametric structuic for the system failure time distribution; that is, the system failure time 

r.btribution is derived from the: negative exponential failure time distributions (with parameters p,) of the 



-_ Gianrttlo 

Ilrdividual faults. We are attempting to find a best ‘fit’ for the common distribution underlying the failure 
,,~te parameters of all the individual faults (both those with observed failures and those yet to fail) anti Itot 
just the obsrrtped failure rate of the system, which is characteristic of traditional non-paramzrric 
Iormulations. This ‘fit’ to the common distribution underlying all the failure rate parameters is the unifying 
‘/ridge that allows us, based on the observed failure times, to make estimates of the failure times CJi the 

,.~ntining faults in the system. 

LS in the J/M model, we CL n proceed in two phases: 

i Find the estimator for n which maximises the likelihood of the observations, given a fixed value of /)I. 

’ Treat this estimator as a function of m, then find the value of m which maximises the resulting 
likelihood. 

1’0 simplify the notation somewhat, we shall again adopt the convention that time is scaled such that the 
.:]iod of observation ends at f = 1. We therefore must also have 0 d I, G 1, for i = 1,2,...,!r. 

! lnder the ‘extended’ assumptions, the individual likelihood factor yi, associated with an observed f:illlll-c 
I rime t,, is 111~ weighted avcr,lge of the likelihood over the range of admissible 11: 

yi = J:P exp(-vi) WFL) jl7a) 

,itnilarly, the likelihood factor z, associated with a fault which did not fail during the observation period, is 

(171)) 

i’hus, given that the system has initially m faults, the likelihood of n failures occurring at tl,12,...,tn is 

!\t,fore applytng Lindsay’s theorem, it is again useful to substitute the change of variable for Jt previously 
1 Ised in our J/M analysis: 

x = exp(-p) (W 

tn applying tlris change of variable to (17a) and (17b) we shall take the limits of integration to be the closed 
luterval [O,l], thusin effect including the limit point, p = 03, as a potential support point for n. We can now 
<Ionfirm that the premises of theorems I, 2 and 3 are satisfied. (18) is of the form of(l), the z and y, factors 
jr2 each of the form (2) with the integration (after the change of variables) being over a compact subset of 
,hz reals and the integrands of (17a) aud (17b) satisfy the conditions follcwing (2). 

Theorem 1 can now be applied to show that some probability distribution, n’ E P{[O,l]}, exists, which 
,n,rximises the likelihood dctined by (18). We can also apply theorem 3 immediately. We first note that the 
‘I values of tllcorem 3 correspond to the integrands of (17a) and (17b) (after the change of variablcb):: 

/; = - I” In(x) for i = 1,2, . . . . n (Na) 

fl=x for i = n+l, n+2, . . . . m (Xb) 

tt can be easily shown that no set of non-zero, positive, real coefficients can exist which satisly (5) 
L:verywhere over any open set of C = [O,l]. Thus, n’ must be a discrete distribution without a density 
..omponent. Accordingly, we can write 

x’ = {(w,,x,)lr = 1,2 I..., v} (21) 

f Jsing theorem 2 (Lindsay’s theorem), we can then identify E, the support base of x’, as a subset of ]1’: 

P’ = ix, I,:, -@j- + (m-n) * =m} 
i 

(22) 



where: 

yi= .$* wfiixr, c fori= 1,2,...,n (23a) 

z= ilW,Xr . i23b) 

Since the defining equation of (22) can only have a finite number of roots in [O,l], the number of points, I’, 
rll p’ must al5o be finite. 

Without loss of generality, we can treat p’ itself as the support base of JC’ by adopting the convention thLit 
I I ,. 0 =0 for each X, E fi’ where .rr BB. As an additional convenience, we shall further assume that the points 
,C j3’ are or&red: x1 < x2 < . . . < x,. 

iIr addition to (22) and (23) above, the necessary and sufficient condition for X’ to be a maxirnising 
.listribution is (hen. by Lindsay’s theorem 

5 J”lfx, 
i-l yl(n’) +(m-n)*<m 

zb 1 
forx B p’ (“4) 

‘I the number of initial faults m is fixed, (22), (23) and (24) can be used to find JC’, the failure IJPI: 
obability tli\trlbution which maximises the likelihood as defined in (18). The estimated failure rate ;li 111,: 
rrnination or observations, c, is then 

I :fore discussing the choice: of a maximising value of M, let us first consider some pf the 
~ ,;iracteristlcs of the solution. As shown by (21), each initial fault can fall into any one CIE I’ 
( ![Lgories. ear:11 category distinguished by a failure rate kll and a probability w, that a specified f,\ult 
I longs to th;lr category. Note: that the solution furnishes both the number of categories v and the 
$ .rues of the X,W pairs. rilso note that, since the failure rate associated with each fault is ;ln 
I. lcpendent 1.ilndom choice 111y assumption 3), the solution offers no assurance that the actual 
I’ .)portlon of f.lults in the rth category equals w,. 

1 t IS also of semi: interest to note that X, = 1 (that is 11, = 0) can be a member of the solution set for finite j/l. 
! .ICL: this implrcs that any esso~~;~tctl fault has a zero failure rate, we have the somewhat paradoxical rc>nlt 
I,. ,I a fault of this category can neither have failed in the period of observation or fail at any time thereatler. 
I clfect, the solution removes all such faults from the active set of initial faults. 

1 .tortunately, r,ome of the coefficients of (22), (23) and (24) are ill-behaved as m-3 co and these equations 
;I) not suitable for investigating the behaviour of the solution for large values of m. Specifically one c;~n 
s;,.,Iv that. as :)I - Q) 

w,(x’) 4 0, for r < v ‘ (26a) 

w,(d) -+ 1 (26b)* 

x&c’) 4 1 (2hC) 

yl(x’) 4 0, for i = 1,2 ,..., n (2htl) 

z(d) 4 1 (2hl!) 

I I ..bcver, one c;ln also show that as m -+ UJ the products mw,(d), m[l-x,(d)] and my‘(d) remain finite: 
a, 1 c.,m limit to home value greater than zero. We can take advantage of this fact to perform a change of 
vat I lljles that will result in well-behaved coefficients for all values of m: 

a = (m-n)/m (27~) 

al = y,/(l-a), for i = 1,2,...,n (271)) _ 



h, = wr(l-xr)l(l-01, for r = 1,2 ,..., v 

.\fter some algebraic manipulation, we can replace (22), (23) and (24) with the following equivalent set of 
C lluations: 

a, = .p, +y 

-X, 
fori= 1,2, . . ..n 

y = [l - (1 - a)( ;: A,)] r=l 

:fl(xr)+ 
r=l a,@ ) n(Tx, <n forxB p’ 

Y(n > 

t Ising the same change of variables, we also obtain 

t;= -$L i&Q&) 
r=l (l-x,) 

IN ~II) = 5, In(aJ + lE- In(y) + ~~lln[k(l-a) + na] 
(1-a) 

(18) 

(19a) 

(?a) 

(30) 

, or u = 1, (3’) reduces to 

In(v) =Zp, In(aJ - n @A,) + !I In(n) 

-- 

(33) 

, (iking the partial differential of (23) with respect to u and evaluating at JL’ produces 

(34) 

#t IS conjectured, by analogy with (12), that (34) has at most one zero in [O,l]. If so, we can show that the 
Lllue of u associated wirh the maximum likelihood is then given by 

(I’ = 1, if 2 (2t,-1) 1 
Fl cc,0 

a------atu= 1 
WJC’) 

(3%) 

u’ = 0, if ,i,l, S in[y(n’)] atu=O (35b) 

:f neither of these conditions is true, the maximising value of u’ is obtained by solving (33) for the value of u 
1 tl,lt results in the equation being equal to zero. (If our conjecture regarding the single zero of (31) is not 
true:, all the local maxima would have to be compared.) 

A numerical algorithm 

‘Ne can char:tcterise the solution of (28) to (30) for some fixed value of u as the following set: 

G(o) = {(x,, h,)lr =1,2,...,v) (33) 

Iormed from the members of I he support set of x’ and transformations of the associated probability weights 
,V In accordalIce with (17~). In representing the solution in this form, we should take note of the fact that 
t:! 7c) implies that xv = 1 * L, = 0, except in the case where u = 1. If u = 1, it can be shown that X, == 1 is 
.IIrvays a menlber of the support set of IT’ and that h, can take on any value from zero to one. 
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Numerical solutions determining this set present some difficulties. In contrast to (10) of the J/M mode!, 
(28) to (30) have no closed-form solution. Furthermore, any straightforward approach to an iterative 
solution is hampered by the fact that we initially have no-information regarding the number of points v in 
the support of x’. 

Following the general approach suggested by Lindsay (GZAI), the solution algorithm we have used to 
find G(u) proceeds by the following steps: 

1 Initialise G to a single pair (xi, h.1) where x1 is the J/M solution given by (10) and At equals 
(I -x1)/(1-u). (If u = 1, then hi = 1.) 

2 Add a pair to G fat each local maximum point of the defining equation of (28) where the equation 
equals or exceeds n. The x value of the pair should be set to the location of the maximum and the A 
v;llue of the pair should be set to zero. 

3 Jlolding the xr values of the pairs of G constant, find the h, values which maximise (32) (or (33), if 
appropriate), subject to either 

i A,=1 iflEG 
r=l 

(37a) 

0 I 

= 1 otherwise Wb) 

Initial faults, m 
Mean 

Std dev 

Failure rate at term, 5 
Mean 

Std dev 

[(estimate) -<(scenario) 
Mean 

Std dev 

Root n of likelihood, ~1’” 
Mean 

Std dev 

Scenario J/M 

165.0 134.1 161.8 
0.0 5.0 36.0 

33.1 8.3 26.9 
4.4 3.5 9.5 

-24.8 -6.2 
6.9 11.9 

78.4 
5.0 

Giammo 

’ 83.1 
4.9 

Fi4:ure 1: Summary results 
I_. 
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Case Fails Scenario J/M Giammo Scenario J/M G i iammo J/M Giammo 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 

j Z 

I :; 
/ 18 
I 
) .'B"o 
/ ‘_ "1 
[ ii2 
i ;!3 
/ :14 
I :15 

116 
! :.! 7 
i ;18 

i!9 
' .30 

.3 1 
32 
.33 
34 
:35 
.36 
.I7 
38 
39 
40 
4 1 
42 
43 
34 
45 
46 
47 
48 
49 
50 

130 165 0 131 2 181.1 35.0 5.0 272 81.21 
127 1650 128.6 133.9 380 66 173 7624 
134 1650 138.2 199.7 31 0 14.1 42.5 71 26 
133 1650 1344 1448 32.0 6.1 21.1 8268 
134 1650 1363 157.2 31.0 8.8 29.2 78.13 
135 1650 1392 1527 30.0 14.3 30.0 72.13 
131 1650 132.2 148.1 340 51 24 7 8275 
131 1650 132.4 136.3 340 6.1 147 81 60 
136 1650 1383 1570 29 0 8.9 29.2 7897 
132 1650 1342 164.2 33.0 8.6 28 9 7653 
133 1650 1372 3282 320 140 50.7 70.93 
133 1650 1344 1438 320 6.2 20.8 8309 
142 1650 144 7 153.0 23.0 10.3 24.9 81.84 
127 1650 131 2 1915 380 14.1 42.7 6707 
132 1650 1332 1424 33.0 5.1 189 82 83 
123 1650 1248 141.7 42.0 7.3 26.5 7288 
122 1650 122.1 123.6 43.0 06 59 8720 
131 1650 131 4 136.5 34.0 1.9 133 90.91 
122 1650 124 1 141.9 43.0 7.9 26 7 7047 
133 1650 1374 182.3 32.0 148 41.7 7055 
126 1650 1274 141 2 39 0 58 222 7856 
133 165.0 1352 168.4 32.0 8.8 360 7783 
133 1650 1352 191 5 320 87 400 7698 
137 1650 1401 175.1 28.0 11.5 377 7695 
140 1650 1435 271.0 250 12.5 443 7686 
123 1650 123 4 1272 42.0 18 11.2 8597 
135 1650 1362 139.5 30.0 5.2 13 1 85.10 
140 1650 1426 153 5 250 10.1 265 8057 
133 1650 1361 1597 32.0 11.1 32.9 7422 
130 1650 131.4 1658 35.0 5.9 28.2 7956 
129 1650 131 2 1472 360 8.5 29.1 75.24 
134 1650 1363 152.0 31.0 8.8 276 78 13 
138 1650 140.1 158.5 27.0 83 28.5 8273 
128 1650 1299 243.2 37.0 7.6 329 75 82 
133 1650 1355 153.9 320 9.6 32.0 7673 
127 1650 1286 1320 380 67 14.0 77 13 
133 1650 1343 141.7 320 61 19.3 8212 
131 1650 1335 151 0 340 9.5 29 4 7570 
138 1650 1420 150.2 270 13.9 269 74 se 
130 1650 130 6 134.5 35.0 3.1 12.1 8885 
130 1650 131.2 181.1 35.0 5.0 272 8121 
127 1650 1286 133.9 38.0 6.6 173 7624 
134 1650 1382 199.7 31 0 14.1 425 71 26 
133 1650 134 4 1448 320 61 21 1 8268 
134 1650 136.3 1572 31.0 88 292 78 13 
135 1650 139 2 152.7 30.0 143 300 72 13 
131 1650 1322 148.1 340 5.1 24 7 8275 
131 1650 1324 136.3 34.0 6.1 147 81 60 
136 1650 1383 1570 29 0 8.9 292 7897 
132 1650 1342 1642 33.0 8.6 28.9 7653 

85 44 
7866 
76 26 
85 80 
83 20 
74 63 
88 3:-) 
8545 
82.78 
7911 
82 77 
8743 
88.2' 
72 60 
85.&i 
77.92 
90 95 
93 87 
73 H'3 
75 c.1 I 
8201 
87 ;!:I 
87 Ali) 

82i:I 
83 i,:! 
88 t:o 
88 .I,; 
84 02 
7821 
83 71 
8402 
81 89 
8775 
81 23 
88 7-l 
7826 
86J7 
80 74 
79 (Jo 

91 23 
85 ~1-1 
78 66 
76.Z; 
85 Dil'r. 
83 20 
74 63 
88 7'9 
85 :15 
8278 
79. I 1 

Numberof 
inrtial faults 

Failure rate Rootn of 
at termination lrkelrhood 
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t i /b)‘follows from the reyuircmcnt that XIV, = 1, which can be evaluated directly using the L,s if 1 BG. 
I #/,I) can be derived by evaluating the defining equation in (28) at s = 1 with o = 1. 

4 1 !rminate pairs from G if maximisntion of the likelihood vlould tend to cause X, to violate (37~). 

5 r:;peat steps 3, 3 and 4 until the maximum value of the defining equation in (28) is within some c of rt. 

A I,,‘,I scenario was constructed to explore the degree of improvement in various estimators afforded by the 
rel;l:tCrtion of the common failure rate assumption of the basic J/h1 formulation; 50 test cases we~c 
in&,~endently generated. Estimators form, the total number of faults, i;, the failure rate at the termination 
of c<~,~~rvations and 11, the likelihood of the observations, were developed using the J/M equations and thu 
COI~I !,ponding equations of the J/h1 model extended by Lindsay’s theorem. Various comparisons were 
the,{ made between these results and the ‘true’ results from the generating scenario. 

Thk ,cenario used to generate the test cases assumed the following: 

1 ‘I ite software system initially contained 165 faults. 

2 ‘I I)C time to failure of each fault was a random variable with a negative exponential distribution. 

3 I I,C failure rate parameter associated with 75 of the faults was 10 failures per unit time: the failure rate 
1, .rameter assoctated with 9) of the faults was one failure per unit time. 

4 I lllltres were ohserved for one unit of time. The faults associated with each failure occurring in this 
1 I lad were tnlmediately removed. 

TI‘$ ,<znario was not constructed to be a ‘typical’ case. The parameters were chosen to represent ‘I 
sit{, It~l.)n inhere It was felt that the common failure rate assumption ofthe J/M formulatron would result in :I 
sigl IcJnt misesttmate of both 1111: rnttial number of faults in the system and the fatlure rate at tl~c 
ter ,~~,rtion ofob~rvations. It u’;I~ hoped that an improvement in these estimators due to the relaxation of 
till ,jumption \+~ld be clearly shown by a comparison of the results. 

Orr IL other hand, the scenario ~lmulci not be considered as necessarily atypical. The number of fault\ 
shr ,.I not be conltdcred as cxc~~.r~e for a large complex system. The pattern of failure times could well 
COT, ,pond to a situation in \vhich 75 of the 165 faults are in commonly encountered routines and arc 
rerl. ,l:L*d in the early phases of system testing, white the remaining 90 are more rarely encountered. The 
pet I ! of observation should corrc:pond to a point in time at which the rate of failures has fallen to a level 
(IeL :han five per c.c:nt of the rnitial i’,rilure rate) at which a decision involving the current failure rate and/or 
the , Irlnber of rclnaining fault& Iulg::t he called for. 

Fift :ases were indcpend~ntl!~ gcncrated and evaluated. Figure 1 presents a statistical summ;rry of the 
rest!, ‘, for the 50 C‘~IWS as a ~\holc. Ftgure 2 gives individual results for each of the 50 cases. 

In r. ttcral, the results confirmed our expectations. The relaxation of the common failure rate asstrmptiort 
brc~~l.~ttt about a significant improvement in the estimates, both of the total number of initial faults and of ; 
the I .Ilure rate at the termination of observations. As shown in Figure 1, the mean difference between the 
estrll. ~ted number of initial fault5 and the actual number improved from -30.9 to -3.3. indicating a 
signlllc.nrt reductron in the bias ot the estimator. The variance of the estimate remained high (standard 
dctl,.[icm equal to .{(,.(I), however. the distribution of the difference appearing highly skeived with a large 
tail I>II the positive side. The mean difference between the estimated and actual failure rates at the 
tertrrrttation of oh\crvations rmprovcd from -24.X to -6.2. again showing a significant reduction in the 
bi;th ,It the estimator. The variance ot this estimate was significantly lower (standard deviation equal to 
1 l.Oi than in the case of the estimate of the number of initial faults, with the distribution of the differ- 
encc ilctween estimated and actual values being much more symmetric. 

The i,nprovement was also reflected in the increase in the likelihood of the observations. The statistic 
shtria 11 in Figures 1 and 2 is the rrth root (where n is the number of observed failures) of the likelihood [I!, as 
delllI:d by means of (11) and (32). Since the J/M solution is also a candidate solution in the revised 
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formu!atGn (and not vice versa), the likelihood of the J/h4 solution must always be less than or equal to the . . 
likelihood of the solution under the revised assumptions. This is clearly shown in Figure 2. 

In summary, the relaxation of the common failure rate assumption has shown the expected improvements, 
as compared to the standard J/M formulation, in removing the bias associated with’this assumption in 
estimating two useful statistics, the number of initial faults and the failure rate at the termination of the 
observations. However, the resultant estimators still exhibit the characteristically high variance of 
estimators of this type. .i. 

5 




